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Abstract

Our world offers a never-ending stream of visual stimuli,
yet today’s vision systems only accurately recognize pat-
terns within a few seconds. These systems understand the
present, but fail to contextualize it in past or future events.
In this paper, we study long-form video understanding.
We introduce a framework for modeling long-form videos
and develop evaluation protocols on large-scale datasets.
We show that existing state-of-the-art short-term models
are limited for long-form tasks. A novel object-centric
transformer-based video recognition architecture performs
significantly better on 7 diverse tasks. It also outperforms
comparable state-of-the-art on the AVA dataset.

1. Introduction

Our world tells an endless story of people, objects, and
their interactions, each person with its own goals, desires,
and intentions. Video recognition aims to understand this
story from a stream of moving pictures. Yet, top-performing
recognition models focus exclusively on short video clips,
and learn primarily about the present — objects, places,
shapes, etc. They fail to capture how this present connects
to the past or future, and only snapshot a very limited ver-
sion of our world’s story. They reason about the ‘what’,
‘who’, and ‘where’ but struggle to connect these elements to
form a full picture. The reasons for this are two fold: First,
short-term models derived from powerful image-based ar-
chitectures benefit from years of progress in static image
recognition [8,72]. Second, many current video recognition
tasks require little long-term temporal reasoning [36,39,61].

In this paper, we take a step towards leveling the playing
field between short-term and long-term models, and study
long-form video understanding problems (Fig. 1). First,
we design a novel object-centric long-term video recog-
nition model. Our model takes full advantage of current
image-based recognition architectures to detect and track
all objects, including people, throughout a video, but ad-
ditionally captures the complex synergies among objects
across time in a transformer-based architecture [74], called
Object Transformers. Tracked instances of arbitrary length

Figure 1. Long-Form Video Understanding aims at understand-
ing the “full picture” of a long-form video. Examples include un-
derstanding the storyline of a movie, the relationships among the
characters, the message conveyed by their creators, the aesthetic
styles, etc. It is in contrast to ‘short-form video understanding’,
which models short-term patterns to infer local properties.

along with their visual features form basic semantic ele-
ments. A transformer architecture then models arbitrary
interactions between these elements. This object-centric
design takes inspiration from early work that builds space-
time instance representations [5,14,22,87], but further con-
siders more complex inter-instance interactions over a long
span of time. The model can be trained directly for a spe-
cific end-task or pre-trained in a self-supervised fashion
similar to models in image recognition [10, 26, 53, 55, 70]
and language understanding [13, 40, 45, 86].

Second, we introduce a large-scale benchmark, which
comprises of 9 diverse tasks on more than 1,000 hours of
video. Tasks range from content analysis to predicting user
engagement and higher-level movie metadata. On these
long-form tasks, current short-term approaches fail to per-
form well, even with strong (Kinetics-600 [6], AVA [25])
pre-training and various aggregation methods.

Our experiments show that Object Transformers outper-
form existing state-of-the-art methods on most of the long-
form tasks, and significantly outperform the current state-
of-the-art on existing datasets, such as AVA 2.2. The videos
we use are publicly available and free.



2. Related Work
Short-form video understanding has seen tremendous
progress in both efficiency [15, 73, 82, 92] and accuracy [8,
16, 60, 77] in recent years. Most state-of-the-art models are
based on 2D or 3D CNNs operating on short videos of less
than five seconds [8, 15, 16, 60, 73, 77, 82, 91, 92]. A few
works explore long-term patterns for improving local pat-
tern recognition [58, 81], but not long-form understanding.

Long-form video understanding is less explored. It aims
to understand the full picture of a much longer video (e.g.,
minutes or longer). Tapaswi et al. [68] introduce a movie
question answering dataset based on both text and video
data. The benchmark, however, is dominated by language-
only approaches [68], making it less ideal for evaluating
progress of computer vision. Vicol et al. [75], Xiong et
al. [84], and Huang et al. [30] use vision-only movie under-
standing datasets, but their videos are not publicly accessi-
ble due to copyright issues. Bain et al. [3] and Zellers et
al. [88] propose joint vision-language benchmarks for text-
to-video retrieval and question answering, respectively.

In this paper, we introduce a new long-form video un-
derstanding benchmark of 9 vision-only tasks on more than
30K freely accessible videos. Our evaluation is relatively
simple compared to prior work that involves language com-
ponents in evaluation protocols.

Some studies propose efficient architectures [31, 35, 91]
or pooling-based methods [17, 19, 76] that may operate on
long-form videos. These methods primarily focus on the
interactions between adjacent frames, while our model cap-
tures the long-range interactions between tracked objects.

Representing instances as space-time trajectory has a
long history in computer vision [14, 21, 22, 56]. Our work
takes inspiration from these concepts, but further considers
inter-instance relationships in our methods.

Interaction modeling for images is widely studied for im-
proving, e.g., object detection [11], human action recogni-
tion [20], or 3D recognition [89]. For videos, a growing
line of work models interactions among objects or features
for improving short-term recognition [4, 18, 33, 47, 48, 50,
69, 78, 90]. They mainly leverage spatial but not temporal
structures of a video.

Self-supervised learning drives the success of natural lan-
guage processing models [13, 40, 45], visual pattern learn-
ing [10, 23, 26, 32, 49, 53, 55, 79], and image-language joint
representation learning [12, 42, 46, 62, 66]. Some of these
methods are video-based like ours, but aim at learning ro-
bust spatial rather than temporal features [23, 32, 49, 79].
For example, Jabri et al. [32] track spatial features across
frames to learn viewpoint-, scale-, or occlusion-invariant
features for each instance. Instead, our goal is to learn
long-term and high-level interaction patterns. Several other

Figure 2. We lever-
age short-term de-
tection and tracking
to form instance rep-
resentations.

papers leverage multiple modalities for learning joint con-
cepts [2, 38, 51, 62, 63]. Our method requires only visual
data. Sun et al. [64] recently propose a joint language-
vision model for learning long-term concepts on cooking
videos. It shares a similar goal to our approach. The main
difference is that they use a ‘frame-as-word’, ‘video-as-
sentence’ analogy, while we build object-centric represen-
tations. Our model captures interactions between objects,
while a ‘frame-as-word’ approach captures the interactions
between adjacent video frames. We will show the signifi-
cance of this design in experiments.

3. Preliminaries

Existing short-term models parse many aspects of a
video. They detect objects, track boxes, etc. This local
understanding forms a useful building block for our Ob-
ject Transformers. Instead of “re-learning” these short-term
concept from scratch, our method builds on these short-term
recognition modules. We briefly review these methods and
introduce notations below.

Action and Object Detection. The states and properties of
humans and objects take a central role in the story told by
the visual world. In this paper, we use an action detection
model [16] to recognize the atomic actions [25] of humans,
and an object detector [57] to find objects with their cate-
gories. We denote the bounding box of a detected person or
object i at frame t by st,i ∈ R4, and the associated feature
representation by zt,i.

Tracking. An instance often appear in multiple frames.
Tracking algorithms track these appearances over time and
associate them to their identity [52, 71]. We use τt,i to de-
note the associated instance index of detection i at time t.1

Shot Transition Detection. Shot transitions or “cuts” seg-
ment a video into shots. They form natural semantic bound-
aries. A rule-based thresholding strategy typically suffices
for shot transition detection [9]. cu denotes the shot an in-
stance u is in.

The methods above parse local properties of a video but
do not connect them to form a more complete picture of the
whole video. We tackle this issue next.

1In instance segmentation literature [27], the term ‘instance’ often
refers to one appearance in one frame. We extend the definition and use
‘instance’ to refer to one appearance in a space-time region, which may
comprise multiple frames.



(a) Long-Form Understanding (b) Masked-Instance Pre-Training (c) Compatibility Pre-Training

Figure 3. Long-Form Video Understanding with Object Transformers. Object Transformers take in instance-level representations and
model the synergy among them for long-form video tasks (3a). To address the sparsity in supervising signals, we pre-train the model to
predict the semantic representations of randomly masked instances (3b) and/or predict “compatibility” between two videos (3c). Both
pre-training tasks encourage Object Transformers to learn long-term semantics, commonsense, or human social behaviors.

4. Long-Form Video Understanding
We propose Object Transformers for long-form video

understanding. It builds on two key ideas: 1) An object-
centric design, and 2) a self-supervised learning approach.

4.1. Object-Centric Design

Instead of modeling videos as width×height×time vol-
ume of pixels, we take a more structured approach and
model how each instance evolves in space and time and the
synergy between the instances.

Consider a set of instances U (people, tables, cars, . . . )
found and tracked by short-term models (§3). Each in-
stance u ∈ U is associated with features in space-time
{(t, st,i, zt,i) | τt,i = u,∀t, i} (Fig. 2), where t, st,i, zt,i,
and τt,i denote the time stamp, spatial locations, short-term
features, and the tracked identity, respectively.

We build a transformer-based architecture [74] to model
both how each instance u ∈ U evolves and interacts with
other instances. The transformer takes a set of representa-
tion vectors as input. In our case, each vector correspond
to a box-level representation together with its position, link
and shot information. Namely, for each (t′, s′, z′) associ-
ated with u, we construct one input vector

y′ :=W(feat)z′ + W(spatial)s′ + E
(temporal)
t′

+ E(instance)
u + E(shot)

cu + b, (1)

where the matrices W(feat) and W(spatial) project z′ and s′

into a shared 768-dimensional vector space, and b is a bias
term. E(temporal) and E(shot) are position embeddings [13]
indexed by ‘time stamp’ and ‘shot index’, respectively. We
additionally add a learned instance-level embedding vector
E(instance) so that the model knows what inputs belong to
the same instance. However, learning instance-specific em-
beddings cannot generalize to new videos with unseen in-
stances. We thus randomly assign instance indices at each
forward pass. This encourages the model to leverage only
“instance distinctiveness” rather than memorizing instance-

specific information. The exact model specification is given
in the Supplementary Material.

We use a learned vector E[CLS] to be the first token
of each example (similar to the “[CLS]” special token in
Devlin et al. [13]), and use the output vector correspond-
ing to that position, v[CLS], as the video-level representa-
tion. We use a linear output head h(task)(v[CLS]) to perform
each video-level end-task. Fig. 3a illustrates our model. In
§4.2, we will introduce additional output heads, h(mask) and
h(compat) along with the associated loss functions `(mask)

and `(compat) for pre-training object transformers in a self-
supervised manner.

Discussion: Object-Centric vs. Frame-Centric vs. Pixel-
Volume. Most existing methods either view a video as a
list of 2D images (e.g., [35, 64]) or a width×height×time
pixel volume (e.g., [8, 16, 72]). While these views are con-
venient, we argue that they are unnatural ways to look at
the signals, possibly leading to difficulties in learning. Af-
ter all, a video frame is simply a projection of (constantly
changing) objects and scenes in a 3D world snapshotted at
a particular point of time. Modeling videos through model-
ing the interactions among a list of 2D images likely suffers
from model misspecification, because the projected 2D im-
ages do not interact with each other — It is the objects in our
3D world that interact with each other. Object Transformers
directly model these interactions.

Modeling a video as a width×height×time pixel vol-
ume [72] amplifies the problem even more, especially for
long videos, because the pixel volume is simply a stack of
the 2D projections, with arbitrary camera positions. The se-
mantic of the viewed world is however, invariant to these
artifacts introduced by observers. The pixel-volume view
ignores this invariance, and thus likely hurts data efficiency,
let alone the prohibitive cost to scale 3D CNNs to long-form
videos. Object Transformers leverage tracking and avoid
these issues. In §6, we will empirically demonstrate the ad-
vantage of the object-centric design over existing frame-list
or pixel-volume designs.



4.2. Self-Supervision

Long-form video understanding also brings challenges
in supervision. Intuitively, long-form videos could en-
joy less ‘supervising signal’ per pixel, given its potentially
larger number of pixels per annotation. In §6, we will see
that a long-form video model trained from scratch indeed
suffers generalization challenges in many tasks. One way to
alleviate the supervision issue is to first pre-train our model
in a self-supervised fashion on unlabeled videos, before
fine-tuning on the end-tasks.2 We present two pre-training
strategies below.

1) Masked-Instance Prediction. One natural choice of the
pretext task is a masked instance prediction task, similar to
Context Encoders [55] or BERT [13]. Namely, we mask
out features of randomly selected instances M ⊂ U , and
train our Object Transformers to predict the “semantics”
(e.g., object categories, person actions) of the masked in-
stances. Note that we mask out only the feature vector z,
but retain time stamp t, spatial position s, instance embed-
ding E(instance), and shot embedding E(shot) for specify-
ing ‘where in a video’ to predict. Following standard prac-
tice [13], masked feature z is replaced by a learned embed-
ding z(mask) with 80% probability, replaced by a randomly
sampled feature with 10% probability, and stays unchanged
with the remaining 10% probability. At each output po-
sition corresponding to the masked inputs, we use a out-
put head h(mask) to predict a probability vector p̂ ∈ ∆d−1

that regresses the pseudo-label3 p ∈ ∆d−1 using distillation
loss [29] (with temperature T = 1),

`(mask) (p, p̂) :=

d−1∑
k=0

−pk log (p̂k) . (2)

Fig. 3b presents a visual illustration. Intuitively, this task
asks ‘What object might it be?’ or ‘What a person might
be doing?’ in the masked regions, given the context. We
humans can perform this task very well, given our social
knowledge and commonsense. We train Object Transform-
ers to do the same.

Discussion: Masked-Instance Prediction vs. Masked-
Frame Prediction. Our method share similar spirits with
Sun et al. [64]’s ‘Masked-Frame Prediction’ pretext task
(if removing their language components), but with impor-
tant distinctions. ‘Masked-Frame Prediction’ is in fact quite
easy, as linear interpolation using the 2 adjacent frames al-
ready provides a strong solution in most cases due to conti-
nuity of physics. This observation is consistent with the ob-
servations in Sun et al. [64] that such pre-training method is

2These pre-training methods are self-supervised, because they do not
require additional annotations to perform. Our full approach is not self-
supervised, because the short-term features are learned from labeled data.

3We infer pseudo-labels using the same short-term model that is used
to compute the feature vector z.

data hungry and that their ‘visual-only’ variant (without us-
ing language) is not effective. Masked-Instance Prediction,
on the other hand, does not suffer from the trivial solution. It
directly models how objects interact with each other, rather
than learning to interpolate in the projected 2D space.

Discussion: Masked-Instance Prediction vs. Spatial-
Feature Learning Methods. Also note that our goal of
pre-training is different from the goal of most prior work on
self-supervised method on videos [2,23,32,38,49,79]. They
typically involve tracking an object or an interest point over
time to learn (e.g., view-point, scale, occlusion, lighting)
invariance on one instance. Their goal is learning robust
spatial representations. In this paper, we aim at learning
longer-term patterns in videos.

2) Span Compatibility Prediction. The second pre-
training pretext task we use is to classify whether two spans
of video are “compatible”. For example, we may define
two spans to be compatible when they come from the same
scene or happen one after another. To solve this task, the
model is encouraged to learn high-level semantics concepts,
e.g., ‘wedding ceremony’ should be more compatible with
‘party’ and ‘dinner’ than ‘camping’ or ‘wrestling’. Fig. 3c
illustrates this method. We use an output head h(compat)

to obtain v = h(compat)
(
v[CLS]

)
and use the InfoNCE

loss [54] for compatibility training:

`(compat)
(
v,v+,v−

)
= − log

e(v·v
+)

e(v·v+) +
∑N−1

n=0 e
(v·v−n )

,

(3)

where v+ and v−n correspond to the spans compatible and
incompatible with v, respectively.

Discussion: Comparison to Next-Sentence Prediction.
Compatibility prediction is a modified version of the “next-
sentence prediction” task commonly used in NLP [13].
One distinction is that while languages typically have strict
grammar and rich structures, videos are more flexible in
structure. For example, an event of ‘dinner’ can take place
with arbitrary number of people for arbitrarily long and po-
tentially presented in multiple shots in a video. We thus re-
lax the requirement of predicting immediate adjacency, and
enforce a more relaxed “compatibility” objective. We will
describe our exact instantiation in §4.3.

4.3. Implementation Details

Instance Representations. We use a Faster R-CNN [57]
with ResNet-101 [28] backbone and FPN [43] pre-trained
on COCO [44] to find objects other than humans. The
model obtains 42.0 box AP on COCO. We use the
RoIAlign [27] pooled feature vector and the end of the
Faster-RCNN as feature vector z. For person action detec-
tion, we adopt a Faster-R-CNN-based person detector [57]
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Figure 4. The Long-Form Video Understanding (LVU) Benchmark. Here we present three examples with their annotations for each
task. LVU contains a wide range of tasks for probing different aspects of video understanding research and model design. The full list of
classes for each task, more details, and more examples are available in Supplementary Material.

(∼93.9 AP@50) commonly used in prior work [16, 81]
to detect people first, and use a ResNet-101 [28] Slow-
Fast network [16] with non-local blocks [77] to compute
RoIAlign [27] pooled features as z for each person box. The
model is pre-trained on AVA [25] and achieves 29.4% mAP
on the AVA validation set. We represent si,j as the posi-

tions of the four corners
(
s
(top)
i,j , s

(bottom)
i,j , s

(left)
i,j , s

(right)
i,j

)
,

where each of the values are normalized in [0, 1]. For track-
ing, we adopt the algorithm described in Gu et al. [25]. We
use PySceneDetect [9] for shot transition detection.

Compatibility Prediction. The MovieClips dataset [1] we
use contain (typically one-to-three-minute-long) segments
of movies. In this paper, we define two spans to be compat-
ible if they come from the same segment.

When training with compatibility prediction, each mini-
batch of size n comprises n/2 pairs of positive examples
(v,v+). Each pair uses all other examples in the same mini-
batch as negative examples v−.

Output Heads. Following prior work [13], h(mask) is a 2-
layer MLP. h(compat) and all end tasks use dropout with
rate 0.1 followed by a linear layer.

5. The Long-Form Video Understanding
(LVU) Benchmark

We introduce a new benchmark that contains 9 tasks
for evaluating long-form video understanding. The bench-
mark is constructed on the publicly available MovieClips
dataset [1], which contains ∼30K videos from ∼3K
movies.4 We resize all videos such that their height is 480
pixels. Each video is typically one-to-three-minute long.

Tasks. Our tasks cover a wide range of aspects of long-
form videos, including content understanding (‘rela-
tionship’, ‘speaking style’, ‘scene/place’), user engage-
ment prediction (‘YouTube like ratio’, ‘YouTube popular-
ity’), and movie metadata prediction (‘director’, ‘genre’,
‘writer’, ‘movie release year’). Fig. 4 presents examples
of each task. For content understanding tasks, we parse
the description associated with each video and use the most
common discovered categories (e.g., ‘friends’, ‘wife & hus-
band’, etc.) to form a task (e.g., ‘relationship’ prediction).

4Videos are accessed on February 26, 2020. Animations are excluded.
Outros are removed for all videos.



average content user engagement metadata
rank relation (↑) speak (↑) scene (↑) like (↓) views (↓) director (↑) genre (↑) writer (↑) year (↑)

R101-SlowFast+NL [16, 28, 77] 2.44 52.4±0.0 35.8±0.0 54.7±0.0 0.386±0.000 3.77±0.00 44.9±0.0 53.0±0.0 36.3±0.0 52.5±0.0

VideoBERT [64] 2.22 52.8±1.0 37.9±0.9 54.9±1.0 0.320±0.016 4.46±0.07 47.3±1.7 51.9±0.6 38.5±1.1 36.1±1.4

Object Transformer 1.33 53.1±1.4 39.4±1.2 56.9±1.0 0.230±0.005 3.55±0.05 51.2±0.8 54.6±0.6 34.5±0.9 39.1±1.2

Table 1. Comparison to Prior Work. Our Object Transformer outperforms both baselines by a clear margin in terms of the overall ranking.
The results support that modeling the synergy across people and objects is important for understanding a long-form video. Interestingly,
short-term models suffice to work well for year prediction, which matches our expectation, since the year can often be recognized through
solely the picture resolution/quality (Fig. 4i). We report the average over 5 runs with standard error for VideoBERT and Object Transformer.

We use YouTube statistics for user engagement prediction
tasks. For metadata prediction tasks, we obtain the meta-
data from the corresponding IMDb entries5. Task construc-
tion details, statistics, and more examples are available in
Supplementary Material.

Evaluation Protocol. Content understanding and metadata
prediction tasks are single-label classification tasks, eval-
uated by top-1 classification accuracy. User engagement
prediction tasks are single-valued regression tasks, evalu-
ated by mean-squared-error (MSE). Compared to existing
tasks [3,88] on this dataset, the output space and evaluation
protocol of LVU is relatively simple. We hope this choice
makes result interpretation easier. Each task is split into
70% for training, 15% for validation, and 15% for testing.
Since we predict “movie” specific metadata for metadata
prediction tasks, we make sure the three splits contain mu-
tually exclusive sets of movies. We select hyperparameters
based on validation results, and report all results on test sets.

6. Experiments
Pre-Training Details. We pre-train our models on the
MovieClip videos for 308,000 iterations with a batch size
of 16 (2 epochs of all possible, overlapping spans) using
Adam [37], with a weight decay of 0.01 and a base learning
rate of 10−4. We use linear learning rate decay and lin-
ear warm-up [24, 28] for the first 10% of the schedule, fol-
lowing prior work [45]. We sample 60-second video spans
for training our models.6 Since each example contains a
different number of instances of different lengths, we per-
form attention masking as typically implemented in stan-
dard frameworks [80].

End-Task Fine-Tuning Details. Following prior
work [45], we perform grid search on training epochs
and batch size ∈ {16, 32} on validation sets. Detailed
training schedule selected for each task is in Supplementary
Material. We report the average performance over 5 runs in
§6.1. We use a base learning rate of 2e-5 (the same as what
is used in BERT [13]), which we find to work well for all
tasks. Other hyperparameters are the same as pre-training.

5https://www.imdb.com/
6In preliminary experiments, we do not see advantages with a longer

training schedule or using spans longer than 60 seconds.

6.1. Main Results

We start with evaluating different state-of-the-art exist-
ing methods on long-form tasks, and comparing them with
the proposed Object Transformers.

Compared Methods. The most prominent class of video
understanding methods today is probably 3D CNNs with
late fusion [8, 16, 72, 73, 77, 82], which has been widely
used for a wide range of tasks [36, 39, 59, 61]. To compare
with this category of methods, we use a large state-of-the-
art model, a ResNet-101 [28] SlowFast network [16] with
non-local blocks [77] running on 128 frames, pre-trained
on Kinetics-600 [6] and AVA [25] as a baseline method.
We train the network using SGD with cosine learning rate
schedule, linear warmup [24], and a weight decay of 10−4,
following standard practice [16]. We select the base learn-
ing rate and the number of training epochs on validation set
for each task; More details are in Supplementary Material.

Another promising baseline we compare to is the
recently proposed frame-based long-term models,
VideoBERT [64]. We compare with its vision-only
variant, since language is beyond the scope of this paper.7

Results. Tab. 1 shows that our Object Transformer outper-
forms both baselines by a clear margin in terms of the over-
all ranking. The short-term model (‘R101-SlowFast+NL’),
is not able to perform well even with a large backbone and
strong pre-training (Kinetics-600 [6] and AVA [25]). This
validates the importance of long-term modeling. We also
observe that object-centric modeling (Object Transform-
ers) is advantageous compared with frame-centric modeling
(‘VideoBERT’ [64]). Interestingly, short-term models suf-
fice to work well for year prediction. This should not come
as a surprise, since local statistics such as image quality or
color style already capture a lot about the ‘year’ of a video
(e.g., as shown in Fig. 4i). VideoBERT [64] works well for
writer prediction, suggesting that this task might not require
too much detailed interaction modeling.

In short, a long-term and object-centric design is impor-
tant for a wide range of LVU tasks.

7We reached out to the authors of VideoBERT [64], but they were not
able to share the code with us. We thus present results based on our re-
implementation. We select hyperparameters for VideoBERT [64] with the
same grid-search protocol as our method for fair comparison. More imple-
mentation details are in Supplementary Material.



pre-train relation speak scene like↓ views↓ director genre writer year
None 46.9 39.8 53.8 0.262 3.44 43.0 55.8 34.5 35.0
Mask 54.7 40.3 58.0 0.238 3.71 53.3 56.1 35.1 40.6
Mask+Compat 50.0 32.8 60.0 0.234 3.37 58.9 49.3 32.7 39.9
∆ (+7.8) (+0.5) (+6.2) (-.028) (-.07) (+15.9) (+0.3) (+0.6) (+5.6)

(a) Pre-training

relation speak scene like↓ views↓ director genre writer year
Short-term 50.0 40.3 52.9 0.366 3.57 54.2 52.9 28.6 37.8
Avg pool 37.5 36.8 57.1 0.496 3.82 40.2 54.4 37.5 32.9
Max pool 50.0 37.8 58.8 0.284 3.78 52.3 55.8 32.7 34.3
Transformer 54.7 40.3 60.0 0.234 3.37 58.9 56.1 35.1 40.6

(b) Long-term module

relation speak scene like↓ views↓ director genre writer year
Person 54.7 40.3 60.0 0.234 3.37 58.9 56.1 35.1 40.6
Person+Obj. 54.7 37.8 58.8 0.223 3.67 48.6 55.8 36.3 42.0

(c) Modality

relation speak scene like↓ views↓ director genre writer year
10k 50.0 40.8 58.0 0.230 3.42 53.3 53.2 32.7 37.8
30k (all) 54.7 40.3 60.0 0.234 3.37 58.9 56.1 35.1 40.6

(d) Number of pre-training videos

Table 2. Ablation Experiments. Our results validate that self-supervised pre-training brings consistent gains across tasks (2a). We also
observe that simpler pooling methods are not as effective as transformer, supporting that object-level interaction modeling is beneficial
(2b). Modeling non-person objects is beneficial for a few tasks, but modeling humans along is already strong is most of the tasks (2c).
Finally, pre-training on more data helps in most cases (2d), suggesting promising future work using even larger datasets. (↓: lower is better)

6.2. Ablation Experiments

Pre-Training. We first evaluate the impact of the proposed
pre-training methods. Tab. 2a shows that on all tasks we
evaluate, pre-training is beneficial.8 In particular, Masked
Instance Pre-Training alone works well in almost all tasks,
while adding Compatibility Pre-Training helps in 4 out of
the 9 tasks. Interestingly, our results are similar to ob-
servations in NLP research, where the ‘masked-language
model’ alone works well on some tasks (e.g., [34]), while
additionally using ‘next-sentence-prediction’ helps on oth-
ers (e.g., [13]). In other parts of this paper, we use the best
performing pre-training method (selected based on valida-
tion results) as the default for each task.

Long-Term Module. Most existing methods perform ei-
ther pooling-based aggregation [76] or no aggregation at all
(late fusion only) [16,77] when it comes to long-term mod-
eling. Tab. 2b compares our Object Transformer with these
approaches. All methods in Tab. 2b build on the same input
features. The only difference is the module built on top of
these features. Object Transformer works better on 8 out of
the 9 tasks, showing that for long-form video understand-
ing, a more powerful object-level interaction modeling is
advantageous. Interestingly, for ‘movie writer’ prediction,
a transformer does not outperform even average pooling.
We conjecture that writer prediction might require a higher
level of cognition or abstraction ability, that is beyond what
transformers can do. We think studying this task is interest-
ing future work.

Modality. While humans are arguably the most central el-
ements for understanding a video, we study the benefit of
including other objects. Tab. 2c shows that adding objects
brings only mild improvement on three tasks. This suggests
that human behavior understanding plays an crucial role in
most long-form tasks.

8In ablation experiments, we report the results without averaging over 5
runs due to computation resource constraints. Thus the results are slightly
different from the results reported in Tab. 1.

Action Detection Object Detection Transformer
params (M) 59.2 60.6 27.0
FLOPs (G) 242.0 88.6 1.8

Table 3. Inference Complexity Breakdown. Object Transformer
is small and efficient — taking only 0.7% of the FLOPs and being
2.2× smaller compared to Action Detection.

Number of Pre-Training Videos. A great advantage of
our pre-training methods is that they are self-supervised,
not requiring any human annotations. It is thus relatively
easy to pre-train on large-scale datasets. Tab. 2d shows that
on most tasks, pre-training on more data helps, suggesting
promising future research that leverages even more data.

Model Complexity. Tab. 3 presents a breakdown analysis
for complexity in terms of both model size and FLOPs. We
see that our Object Transformer is small and efficient. It is
2.2× smaller and takes only 0.7% of the FLOPs compared
to short-term action detection. We thus expect future re-
search on long-form video understanding to be accessible.

Example Predictions of Masked Instance Prediction. Fi-
nally, we present case study to understand what the model
learns with Masked Instance Prediction. Fig. 5 presents
three examples from a hold-out dataset of AVA [25] along
with the model outputs. We see that our model leverages
the context, some of them not on the same frame, and make
sensible predictions without seeing the actual content. This
validates that long-term human interactions can indeed be
learned in a self-supervised way.

6.3. Experiments on AVA

So far we have evaluated Object Transformers on long-
form video tasks. We next evaluate its ability of improving
“short-form” recognitions through incorporating long-term
context. Here evaluate our method on AVA [25] V2.2 for
spatial-temporal action detection. Performance is measured
by mAP, following standard practice [25].



Predictions: stand (99.2%), answer phone (97.8%)

Predictions: hand clap (79.1%), stand (71.5%), watch (a person) (69.4%)

Predictions: play musical instrument (90.1%), sit (56.9%)

Figure 5. Masked Instance Prediction Examples. Here we present three examples along with their masked instances, and the actions of
these instances predicted by our model.† Without seeing the actual content, our model leverages long-term context and makes plausible
predictions. Some of these (e.g., the top example) are not possible without modeling longer-term context. (Best viewed on screen.)
†: Here we list predictions with≥50% probabilities. We present only 7 frames for each example at 0.5 FPS due to the space constraint; See Supplementary
Material for the full examples.

input pre-train mAP FLOPs
AVA V2.1

AVA [25] V+F K400 15.6 -
ACRN [65] V+F K400 17.4 -
STEP [85] V K400 18.6 -
Zhang et al. [90] V K400 22.2 -
RTPR [41] V+F ImageNet 22.3 -
Girdhar et al. [18] V K400 25.0 -
LFB [81] V K400 27.7 -
AVSlowFast [83] V+A K400 27.8 -

AVA V2.2
AVSlowFast [83] V+A K400 28.6 -
AIA [67] V K700 32.3 -
X3D-XL [15] V K600 27.4 -
SlowFast R101 [16] V K600 29.4 1.000×
Object Transformer (masked) V K600 29.3 1.007×
Object Transformer V K600 31.0 1.007×

Table 4. Action Recognition Results on AVA. Object Trans-
former outperforms prior work, which use only short-term infor-
mation. Our results suggest that long-term interaction and context
are beneficial for short-form tasks as well. (V: Visual; A: Audio;
F: Flow; K400: [36]; K600: [6]; K700: [7].)

Adaptation to AVA. Note that directly fine-tuning Object
Transformers to predict the box-level AVA outputs would
lead to a “short-cut” solution, where the model directly
looks at the corresponding input feature z without long-term
modeling. We thus mask out the input features z for the
target instances (similar to masked-instance pre-training)
when fine-tuning the AVA model. This, however, would put
our model at a disadvantage, since prediction given only
context is much harder than the original task. We thus take
a simple approach of late fusing the short-term prediction,
and fine-tuning only the final linear layer (for 2000 itera-
tions using a base learning rate of 10−4). This procedure is
efficient, as no updating of the attention layers are involved.

Results. We evaluate and compare our Object Transformer
with prior work in Tab. 4. We see that without using
optical-flow [25, 41, 65], audio [83], or task-specific engi-
neering, our Object Transformer outperforms state-of-the-
art short-term models that use comparable (K600 [6]) fea-
ture pre-training by 1.6% absolute (29.4%→ 31.0%). This
shows that even for short-form tasks, it is beneficial to
consider long-term context to supplement or disambiguate
cases where local patterns are insufficient. Note that this im-
provement comes almost “for free”, as it only uses 0.7% of
additional FLOPs and fine-tuning of a linear layer. Interest-
ingly, a “masked” Object Transformer without late fusion
(denoted ‘Object Transformers (masked)’ in Tab. 4), still
achieves 29.3, demonstrating that “given context only”, our
model is able to leverage context and predict the semantics
of the masked parts of a video with state-of-the-art quality
(also see Fig. 5 for qualitative results).

In short, plugging a Object Transformer into a short-
form task is easy, and it leads to a clear improvement.

7. Conclusion
In this paper, we take a step towards understanding long-

form videos. We build a new benchmark with 9 tasks on
publicly available large datasets to evaluate a wide range
of aspects of the problem. We observe that existing short-
term models or frame-based long-term models are limited in
most of these tasks. The proposed Object Transformers that
model the synergy among people and objects work signifi-
cantly better. We hope this is a step towards deeper, more
detailed, and more insightful understanding of our endlessly
evolving visual world, with computer vision.
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